
Kernel Preemption
Linux Internals Seminar WS 2003/2004

Max-Gerd Retzlaff <m.retzlaff@gmx.net>

2

Overview

I. Introduction

II. The kernel preemption patch

III. Comparison to other efforts and appraisal

IV. References

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

3

Overview

I. Introduction

II. The kernel preemption patch

III. Comparison to other efforts and appraisal

IV. References

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

4

The goal

increase system response

reduce latency, resp.

in a nutshell:
A system that is responsive, even under high
load caused by:

CPU utilization and/or
high I/O throughput.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

5

What for?
musicians

audio hard disc recording and MIDI
(pseudo) real-time applications

embedded systems for industrial
automation

the usual user
a fast and responsive desktop
“neither jerky video nor choppy audio”

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

6

hard real-time

real-time or hard real-time means:

guaranteed time frames / deadlines

Disaster happens if deadline is missed,
so the maximum response time must b#
within the time frame.
example: an airplane’s computer system

very time-consuming design (but possible!)

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

7

“pseudo” real-time

Take a fast processor, break up long-held
locks, make the kernel preemptible, etc.

You have got a “real-time” capable system!

Of course, this is wrong...
reduced average latency but
no guaranteed maximum response tim#

Nevertheless enough for video streaming and
maybe even for some industrial automation.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

8

History I:
low latency patches

low latency patches for 2.2 and later 2.4
by Ingo Molnar and Andrew Morton, resp.

use scheduling points / preemption points
to break up long-held locks (traversals of long lists)

if (current->need_resched) schedule();
experimental approach: Measure latencies of particular
kernel regions and place scheduling points.
better referenced as: lock-breaking patches

remarkable lobby: “a joint letter on low
latency and linux” on June 28th, 2000

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

9

History II:
kernel preemption patches

at least two independent efforts:

MontaVista press release on Sep. 7th, 2000
Originally written by Nigel Gamble (MontaVista).
Presumedly since October, 2001 maintained by
Robert Love (employee of MontaVista since
January, 2002).
Merged into the main linux kernel-tree
as of v2.5.4-pre6 on Feb. 10, 2002.

TimeSys’s implementation seems to be a tad
superior.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

10

Overview

I. Introduction

II. The kernel preemption patch

III. Comparison to other efforts and appraisal

IV. References

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

11

Hardware handling of
interrupts and exceptions

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

interrupt / exception

occurs

store ss, esp, and eflags

in the kernel stack

load cs & eip from IDT

entry ! jump to handler

iret: load eflags, cs, eip,

ss, esp from stack

execute handler code

save it on the stack

exception carries

hardware error

code?

yes

no

12

do_IRQ()

ret_from_intr

SAVE_ALL

registers

ret_from_exception

SAVE_ALL

registers

do_exception_
handler()

ret_from_exception

Nested kernel

control path?

RESTORE_ALL

registers

yes

SAVE_ALL

registers

RESTORE_ALL

registers

... and software handling

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

noNested kernel

control path?

Need

reschedule?

schedule()yes

RESTORE_ALL

registers

no

no

Pending

signals?

do_signal()

yes

Need

reschedule?

ret_from_intr

Nested kernel

control path?
yes

RESTORE_ALL

registers

Some tests

successful?

preempt_schedule()

yes no

ret_from_fork

(child only)

ret_from_sys_call

system_call()

SAVE_ALL

registers

ret_from_sys_call

system_call()

13

Call of preempt_schedule
in ret_from_exception

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

if preempt_count == 0

and soft_irqs on local cpu on
and need_resched != 0

and irqs on local cpu on
then

call preempt_schedule()
jump to ret_from_intr

ret_from_exception:
 movl EFLAGS(%esp),%eax

 # mix EFLAGS and CS
 movb CS(%esp),%al
 testl $(VM_MASK | 3),%eax

 # return to VM86 mode or non-supervisor?
 jne ret_from_sys_call
#ifdef CONFIG_PREEMPT
 cmpl $0,preempt_count(%ebx)
 jnz restore_all
 cmpl $0,need_resched(%ebx)
 jz restore_all
 movl SYMBOL_NAME(irq_stat)+
 irq_stat_local_bh_count CPU_INDX,%ecx
 addl SYMBOL_NAME(irq_stat)+

 irq_stat_local_irq_count CPU_INDX,%ecx
 jnz restore_all
 incl preempt_count(%ebx)
 sti
 call SYMBOL_NAME(preempt_schedule)
 jmp ret_from_intr
#else
 jmp restore_all
#endif

14

What’s the problem?

Not everything can safely be preempted,
these sections are called critical.

examples: the scheduler, obviously,
the bottom half handler (but many more...)

So we have to locate all of these section
and mark them to be not preemptible?

Fortunately this work has been done!

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

15

SMP spinlocks

As part of the SMP support Linux already has
relatively fain-grained locks: the spinlocks.

Spinlocks ensure exclusive access to a resource.

Additionally they disable interrupts only for
the local CPU.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

16

Extending spinlocks

The preemption patch uses spinlocks as
“preemption marks”.

A spinlocked region is not to be preempted.

Nice, as preemption marks for uniprocessor
(UP) systems are the logical equivalent of
spinlocks for SMP.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

17

Data protection
under preemption

preempt_disable()
 increment preempt counter

preempt_enable()
 decrement preempt counter

preempt_enable_no_resched()
 decrement, but no immediately preempt

preempt_get_count()
 return the counter

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

18

How to extend spinlocks?
Old spinlock functions wrapped.

New wrappers call the preemption functions.

No explicit preemption prevention necessary
in any locks or with disabled interrupts.

Any other code can be preempted at any point.

{spin|read|write}_{un|try}lock() call
preempt_enable() ⇒ preempt_schedule() !

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

19

Consequences of
preemption - example #1

Per-CPU data is not “implicitly locked”
anymore.

in linux/kernel/softirq.c
 int cpu = smp_processor_id();
 unsigned long flags;
 local_irq_save(flags);

replaced by
 int cpu;
 unsigned long flags;
 local_irq_save(flags)
 cpu = smp_processor_id();

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

20

Consequences of
preemption - example #2

CPU state must be protected:

e.g. on x86 FPU mode is now critical

What happens if the kernel executes a
floating-point instruction and is then
preempted?

Remember, kernel does not save FPU state
except for user mode processes.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

21

Overview

I. Introduction

II. The kernel preemption patch

III. Comparison to other efforts and appraisal

IV. References

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

22

Counter arguments
preemption introduces complexity
 ⇒ bad for throughput

Tests have shown: It even improves
throughput in nearly all situations.

hypothesis:
When I/O data becomes available, the user
process (if important) can process it
immediately — as soon as the interrupt that
set the need_resched returns, in fact!

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

23

Why is
TimeSys’ Patch better?

Basically a similar approach altering spin-lock
calls, but using a mutex instead of a counter.
Mutexes ensure mutally exclusive access to a
resource.

counter approach: Any spinlock-held critical section
prevents preemption.
mutex approach: A high priority process can preempt a
lower priority process that holds a mutex for a different
resource.

The mutex also employs priority inheritance
to avoid the Priority Inversion Problem.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

24

Why isn’t TimeSys patch
merged into Linux? #1

TimeSys just seems not to be as commited
to open source as MontaVista.

Free version ca$ed “TimeSys’s Linux GPL” exists, bu%
apparently you have to register yourself in order to
get it and
other additions (incl. real-time scheduling and
resource a$ocation) are realized as non-(e#
modules that provide extra system ca$s.

Sourceforge project page for MontaVista’s patch
Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

25

Why isn’t TimeSys patch
merged into Linux? #2

MontaVista engaged Robert Love who since the)
is “getting to work on a lot of projects in th#
community” (acc. to his words).

MontaVista feels itself responsible to the linux
community to innovate and to release early and
o*en (acc. to their words).

Robert Love sent the patch to Linus Torvalds
(”please apply”) and Linus liked the patch.
It corresponds to the first design outline he did i)
discussions during kernel 2.3.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

26

Conclusion
MontaVista’s / Robert Love’s kernel
preemption patch...

reduces the average latency of Linux and

makes it generally more responsive.

It does not guarantee a maximum latency.

Explicit scheduling points are still useful
to break up long-held locks
(only in spin-lock-held regions, of course).

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

27

Overview

I. Introduction

II. The kernel preemption patch

III. Comparison to other efforts and appraisal

IV. References

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

28

References 1
OS design background:

Andrew S. Tanenbaum, Moderne Betriebssyteme, 2. Auflage
William Stallings, Operating Systems, Fourth Edition

Linux specific background:
Tigran Aivazian, Linux Kernel 2.4 Internals, Aug. 7th, 2002
 (The LKI is part of the Linux Documentation Project.)
Daniel O. Bovet & Marco Cesati, Understanding the Linux
Kernel, First Edition (Kernel 2.2) and 2nd Edition (Kernel 2.4)

Source codes of...
the Linux kernel versions 2.4.22 and 2.4.23,
several versions of MontaVista’s / Robert Love’s
Kernel Preemption Patch, and
the low latency / lock-breaking patches
by Ingo Molnar and Andrew Mortan, respectively.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

29

References 2
online resources in order of application

http://www.linuxdevices.com/articles/AT5503476267.html
ELJOnline: “Real-Time and Linux, Part 2: the Preemptible Kernel”

http://www.linuxdevices.com/articles/AT5997007602.html
ELJOnline: “Real-Time and Linux, Part 1”

http://people.redhat.com/mingo/lowlatency-patches/
low-latency-patches by Ingo Molnar

http://www.zipworld.com.au/~akpm/linux/schedlat.html
Linux scheduling latency by Andrew Morton

http://www.gardena.net/benno/linux/audio/
scheduling latency tests by Benno Senoner

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

30

References 3

http://seclists.org/linux-kernel/2000/Jul/0123.html
Linux Kernel mail: “a joint letter on low latency and Linux,”
75 signees, started a thread of 218 mails

http://seclists.org/linux-kernel/2000/Jul/0157.html
Torvalds: “Badly written code will be a problem. The approach
that the patches so far have taken is to just add scheduling points
all over the map.”

http://seclists.org/linux-kernel/2000/Jul/0214.html
Torvalds: “I refuse to have a kernel that is bogged down with
random crap all over the place. It’s wrong. It’s distasteful. And it
leads to more and more crap over time. That’s how you get a
BAD operating system. “

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

31

References 4
http://www.ussg.iu.edu/hypermail/linux/kernel/0110.0/1215.html
mail “low-latency patches” by Bob McElrath
starts a discussion between Robert Love and Andrew Morton

http://www.ussg.iu.edu/hypermail/linux/kernel/0110.0/1216.html
Morton: “[My patch] also reorganises various areas of the kernel
which can traverse very long lists when under spinlocks.”
deliberate responses by Robert Love:
http://www.ussg.iu.edu/hypermail/linux/kernel/0110.0/1314.html
http://www.ussg.iu.edu/hypermail/linux/kernel/0110.0/1338.html
http://www.ussg.iu.edu/hypermail/linux/kernel/0110.0/1319.html

http://www.linuxdevices.com/news/NS7572420206.html
“MontaVista unveils fully preemptable Linux kernel prototype”

http://www.mvista.com/news/2000/montavistafirst.html
“MontaVista First to Deliver Hard Real-Time Linux”, Sep. 7th, 2000

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

32

References 5

http://lwn.net/2001/0830/a/preempt.php3
Robert Love: “Updated Linux kernel preemption patches”,
mentiones Nigel Gamble (of MontaVista) as original author

http://www.kernel.org/pub/linux/kernel/v2.5/testing/patch-2.5.4.log
“Summary of changes from v2.5.4-pre5 to v2.5.4-pre6”
“[PATCH] Preemptible Kernel for 2.5” merged

http://www.linuxdevices.com/news/NS3989618385.html
“Preemptible kernel patch makes it into Linux kernel v2.5.4-pre6”,
Feb. 10, 2002

http://www.linuxdevices.com/articles/AT8267298734.html
“An interview with preemptible kernel patch maintainer, Robert
Love”, Jan. 18th, 2002

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

33

References 6

http://www.linuxdevices.com/news/NS4265889552.html
“Update: Real-time Linux sub-kernels, benchmarks,
and . . . contention”, Responses and “clarifications”
by people of MontaVista, TimeSys, FSMLabs, etc.

http://www.linuxdevices.com/articles/AT6106723802.html
“ A TimeSys perspective on the Linux preemptible kernel”

http://kerneltrap.org/node/view/336
“Interview: Robert Love”, July 16, 2002

http://www.mvista.com/dswp/PreemptibleLinux.pdf

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

Questions?

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

Thank you
for your attention.

Max-Gerd Retzlaff, Preemptive Kernel Linux Internals Seminar WS 2003/2004

